Comparison theorems and strong oscillation in the half-linear discrete oscillation theory

Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Pedagogickou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

ŘEHÁK Pavel

Rok publikování 2003
Druh Článek v odborném periodiku
Časopis / Zdroj Rocky Mountain Journal of Mathematics
Fakulta / Pracoviště MU

Pedagogická fakulta

Citace
Doi http://dx.doi.org/10.1216/rmjm/1181069996
Obor Obecná matematika
Klíčová slova Half-linear difference equation; generalized discrete Riccati and Euler equation; comparison theorems
Popis Consider the second order half--linear difference equation $$ \Delta(r_k|\Delta y_k|^{\alpha-1}\sgn\Delta y_k)+p_k|y_{k+1}|^{\alpha-1}\sgn y_{k+1}=0, \quad \alpha>1. $$ We give several various types of comparison theorems for this equation (included the so--called telescoping principle) and also for an associated generalized Riccati difference equation. In the second part we present strongly (non)oscillation criteria and related results. The paper is finished by an example, where oscillatory properties of a generalized discrete Euler equation are investigated.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.