IMGTB: A Framework for Machine-Generated Text Detection Benchmarking

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

SPIEGEL Michal DOMINIK Macko

Rok publikování 2024
Druh Článek ve sborníku
Konference Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://aclanthology.org/2024.acl-demos.17/
Doi http://dx.doi.org/10.18653/v1/2024.acl-demos.17
Klíčová slova machine-generated text detection; natural language processing; large language models; evaluation; comparison; framework
Popis In the era of large language models generating high quality texts, it is a necessity to develop methods for detection of machine-generated text to avoid their harmful use or simply for annotation purposes. It is, however, also important to properly evaluate and compare such developed methods. Recently, a few benchmarks have been proposed for this purpose; however, integration of newest detection methods is rather challenging, since new methods appear each month and provide slightly different evaluation pipelines.In this paper, we present the IMGTB framework, which simplifies the benchmarking of machine-generated text detection methods by easy integration of custom (new) methods and evaluation datasets. In comparison to existing frameworks, it enables to objectively compare statistical metric-based zero-shot detectors with classification-based detectors and with differently fine-tuned detectors. Its configurability and flexibility makes research and development of new detection methods easier, especially their comparison to the existing state-of-the-art detectors. The default set of analyses, metrics and visualizations offered by the tool follows the established practices of machine-generated text detection benchmarking found in state-of-the-art literature.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.