On the Routh reduction of variational integrals. Part 1: The classical theory.
Autoři | |
---|---|
Rok publikování | 2012 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | WSEAS TRANSACTIONS on MATHEMATICS |
Fakulta / Pracoviště MU | |
Citace | |
Obor | Obecná matematika |
Klíčová slova | Variational integral; Poincare-Cartan form; conservation law; Routh reduction |
Popis | A geometrical approach to the reductions of one-dimensional first order variational integrals with respect to a Lie symmetry group is discussed. The method includes both the Routh reduction of cyclic variables and the Jacobi-Maupertuis reduction to the constant energy level. In full generality, it may be applied even to the Lagrange variational problems with higher order symmetries. |
Související projekty: |