A note on asymptotics and nonoscillation of linear $q$-difference equations

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Pedagogickou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

ŘEHÁK Pavel

Rok publikování 2012
Druh Článek v odborném periodiku
Časopis / Zdroj Electronic Journal of Qualitative Theory of Differential Equations
Fakulta / Pracoviště MU

Pedagogická fakulta

Citace
www http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=3&paramtipus_ertek=publication&param_ertek=1073
Obor Obecná matematika
Klíčová slova q-difference equation; asymptotic behavior; nonoscillation
Popis We study the linear second order $q$-difference equation $ y(q^2t)+a(t)y(qt)+b(t)y(t)=0 $ on the $q$-uniform lattice $\{q^k:k\in\N_0\}$ with $q>1$, where $b(t)\ne0$. We establish various conditions guaranteeing the existence of solutions satisfying certain estimates resp. (non)oscillation of all solutions resp. $q$-regular boundedness of solutions resp. $q$-regular variation of solutions. Such results may provide quite precise information about their asymptotic behavior. Some of our results generalize existing Kneser type criteria and asymptotic formulas, which were stated for the equation $D_q^2y(qt)+p(t)y(qt)=0$, $D_q$ being the Jackson derivative. In the proofs however we use an original approach.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.