q-Karamata functions and second order q-difference equations

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Pedagogickou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

ŘEHÁK Pavel VÍTOVEC Jiří

Rok publikování 2011
Druh Článek v odborném periodiku
Časopis / Zdroj Electronic Journal of Qualitative Theory of Differential Equations
Fakulta / Pracoviště MU

Pedagogická fakulta

Citace
Obor Obecná matematika
Klíčová slova regularly varying functions; rapidly varying functions; q-difference equations; asymptotic behavior
Popis In this paper we introduce and study $q$-rapidly varying functions on the lattice $\qN:=\{q^k:k\in\N_0\}$, $q>1$, which naturally extend the recently established concept of $q$-regularly varying functions. These types of functions together form the class of the so-called $q$-Karamata functions. The theory of $q$-Karamata functions is then applied to half-linear $q$-difference equations to get information about asymptotic behavior of nonoscillatory solutions. The obtained results can be seen as $q$-versions of the existing ones in the linear and half-linear differential equation case. However two important aspects need to be emphasized. First, a new method of the proof is presented. This method is designed just for the $q$-calculus case and turns out to be an elegant and powerful tool also for the examination of the asymptotic behavior to many other $q$-difference equations, which then may serve to predict how their (trickily detectable) continuous counterparts look like. Second, our results show that $\qN$ is a very natural setting for the theory of $q$-rapidly and $q$-regularly varying functions and its applications, and reveal some interesting phenomena, which are not known from the continuous theory.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.