Asymptotic behaviour of a two-dimensional differential system with a nonconstant delay under the conditions of instability

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

KALAS Josef REBENDA Josef

Rok publikování 2011
Druh Článek v odborném periodiku
Časopis / Zdroj Mathematica Bohemica
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www Mathematica Bohemica
Obor Obecná matematika
Klíčová slova delayed differential equations; asymptotic behaviour; boundedness of solutions; Lyapunov method; Wazewski topological principle
Popis Several results dealing with the asymptotic behaviour of a real nonlinear two-dimensional system with a finite number of bounded nonconstant delays under the assumption of instability are presented. Conditions for the instable properties of solutions together with the conditions for the existence of bounded solutions are given. The methods are based on the transformation of the real system considered to one equation with complex-valued coefficients. Asymptotic properties are studied by means of a suitable Lyapunov-Krasovskii functional and the Wazewski topological principle. The results generalize some previous ones, where the asymptotic properties for two-dimensional systems with one constant or nonconstant delay were studied.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.