Higher order Grassmann fibrations and the calculus of variations
Autoři | |
---|---|
Rok publikování | 2010 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Balkan Journal of Geometry and its Applications |
Fakulta / Pracoviště MU | |
Citace | |
Obor | Obecná matematika |
Klíčová slova | Variational theory; velocity bundle; Grassmann bundle; Lepage form |
Popis | Geometric structure of global integral variational functionals on higher order tangent bundles and Grassmann fibrations are investigated. The theory of Lepage forms is extended to these structures. The concept of a Lepage form allows us to introduce the Euler-Lagrange distribution for variational functionals, depending on velocities, in a similar way as in the calculus of variations on fibred manifolds. Integral curves of this distribution include all extremal curves of the underlying variational functional. The generators of the Euler-Lagrange distribution, defined by the Lepage forms of the first order, are found explicitly |
Související projekty: |