Data Reduction In Classification Of 3-D Brain Images In The Schizophrenia Research

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Lékařskou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

JANOUŠOVÁ Eva SCHWARZ Daniel KAŠPÁREK Tomáš

Rok publikování 2010
Druh Článek ve sborníku
Konference Analysis of Biomedical Signals and Images, Biosignal-Brno
Fakulta / Pracoviště MU

Lékařská fakulta

Citace
www http://www.biosignal.cz
Obor Neurologie, neurochirurgie, neurovědy
Klíčová slova Principal Component Analysis; Classification; MRI; Computational Neuroanatomy; Schizophrenia
Popis Multidimensional image data are usually reduced during preprocessing to lower high computational requirements and to cope with the well-known small sample size problem in the huge data analysis. Two reduction methods based on principal component analysis (PCA) are compared and further modified here to be used in classification of 3-D MRI brain images of first-episode schizophrenia patients and healthy controls. The first reduction method is the two-dimensional principal component analysis (2DPCA) and the second one is the PCA based on covariance matrix of persons (pPCA). The classification efficiency of data reduced by 2DPCA and pPCA are compared while using various input image data and two classification methods – the centroid method and the average linkage method.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.