Statistical Edge Detection of Concealed Weapons Using Artificial Neural Networks

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

WILLIAMS Ian SVOBODA David BOWRING Nicholas GUEST Elizabeth

Rok publikování 2008
Druh Článek ve sborníku
Konference Proceedings of SPIE-IS&T Electronic Imaging
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www http://dx.doi.org/10.1117/12.766472
Obor Využití počítačů, robotika a její aplikace
Klíčová slova statistical edge detection; neural networks; image processing
Popis A novel edge detector has been developed that utilizes statistical masks and neural networks for the optimal detection of edges over a wide range of image types. The failure of many common edge detection techniques has been observed when analyzing concealed weapons X-ray images, biomedical images or images with significant levels of noise, clutter or texture. This novel technique is based on a statistical edge detection filter that uses a range of two-sample statistical tests to evaluate any local image texture differences. The range and type of tests has been greatly expanded from the previous works. This process is further enhanced by applying combined multiple scale pixel masks and multiple statistical tests, to Artificial Neural Networks (ANN) trained to classify different edge types. Through the use of Artificial Neural Networks (ANN) we can combine the output results of several statistical mask scales into one detector. Furthermore we can allow the combination of several two sample statistical tests of varying properties (for example; mean based, variance based and distribution based). This combination of both scales and tests allows the optimal response from a variety of statistical masks. From this we can produce the optimum edge detection output for a wide variety of images, and the results of this are presented.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.