Artificial neural networks for modeling electrophoretic mobilities of inorganic cations and organic cationic oximes used as antidote contra nerve paralytic chemical weapons

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

MALOVANÁ Sabina FRIAS GARCIA Borges HAVEL Josef

Rok publikování 2002
Druh Článek v odborném periodiku
Časopis / Zdroj ELECTROPHORESIS
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Obor Analytická chemie, separace
Klíčová slova Artificial neural networks; cationic oximes; antidote contra nerve paralytic chemical weapons
Popis Electrophoretic mobility of various analytes can be modeled and thus also predicted using artificial neural networks (ANNs) evaluating experiments done according to a suitable experimental design. in contrast to response surfaces modeling which can be used to predict optimal separation conditions, ANNs combined with experimental design were shown to be efficient for modeling and prediction of optimal separation conditions, while no explicit model and any knowledge of the physicochemical constants is needed. Methodology has been developed and demonstrated on separation of inorganic cations and organic oximes while various additives (methanol, complexation agent), pH or buffer concentration were followed. In our approach proposed the number of experiments necessary to find optimal separation conditions can be reduced significantly.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.