Quantum homogenization for continuous variables: Realization with linear optical elements

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

NAGAJ Daniel STELMACHOVIC Peter BŮŽEK Vladimír KIM Myungshik

Rok publikování 2002
Druh Článek v odborném periodiku
Časopis / Zdroj Physical Review A
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Obor Teoretická fyzika
Klíčová slova quantum information; entanglement; dynamics of open quantum systems
Popis Recently Ziman et al. [Phys. Rev. A 65, 042105 (2002)] have introduced a concept of a universal quantum homogenizer which is a quantum machine that takes as input a given (system) qubit initially in an arbitrary state $\rho$ and a set of N reservoir qubits initially prepared in the state $\xi$. The homogenizer realizes, in the limit sense, the transformation such that at the output each qubit is in an arbitrarily small neighborhood of the state $\xi$ irrespective of the initial states of the system and the reservoir qubits. In this paper we generalize the concept of quantum homogenization for qudits, that is, for $d$-dimensional quantum systems. We prove that the partial-swap operation induces a contractive map with the fixed point which is the original state of the reservoir. We propose an optical realization of the quantum homogenization for Gaussian states. We prove that an incoming state of a photon field is homogenized in an array of beam splitters. Using Simon's criterion, we study entanglement between outgoing beams from beam splitters. We derive an inseparability condition for a pair of output beams as a function of the degree of squeezing in input beams
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.