CAPILLARY ELECTROPHORESIS CHIRAL SEPARATION MODELLING WITH THE USE OF ARTIFICIAL NEURAL NETWORKS

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

HAVEL Josef FARKOVÁ Marta

Rok publikování 2002
Druh Článek ve sborníku
Konference CHIRANAL 2002
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Obor Analytická chemie, separace
Klíčová slova artificial neural networks; capillary electrophoresis; chiral separation
Popis Recent development and future trends of enantioseparations in capillary electrophoresis have been reviewed by Chankvetadze et al. On the base of exact physicochemical description using e.g. CELET program the stability constants of either chiral or non-chiral inclusion complexes can be calculated. As for review we refer to Vespalec et al. Recently, we have shown that "soft" modelling of achiral CE separation processes is possible using a combination of artificial neural networks (ANN) and experimental design. Possibility of enantiomers quantification from unresolved peaks was also demonstrated. In this work we are examining possibility of chiral separation "soft" modelling with ANN. It was found that, using suitable ANN architecture, the description of chiral separation is possible with sufficient accuracy. The advantage is that it is not necessary to know or determine chiral selector - enantiomers stability constants and/or the separation mechanism. Using combination of suitable experimental design and ANN architecture, the prediction of optimal conditions for the separation of enantiomers is possible.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.