Evaluating Sentence Alignment Methods in a Low-Resource Setting: An English-YorùBá Study Case

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

SIGNORONI Edoardo RYCHLÝ Pavel

Rok publikování 2023
Druh Článek ve sborníku
Konference Proceedings of the Sixth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2023)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace SIGNORONI, Edoardo a Pavel RYCHLÝ. Evaluating Sentence Alignment Methods in a Low-Resource Setting: An English-YorùBá Study Case. Online. In Atul Kr. Ojha, Chao-hong Liu, Ekaterina Vylomova, Flammie Pirinen, Jade Abbott, Jonathan Washington, Nathaniel Oco, Valentin Malykh, Varvara Logacheva, Xiaobing Zhao. Proceedings of the Sixth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2023). Stroudsburg, PA 18360: Association for Computational Linguistics, 2023, s. 123-129. ISBN 978-1-959429-55-5. Dostupné z: https://dx.doi.org/10.18653/v1/2023.loresmt-1.10.
www https://aclanthology.org/2023.loresmt-1.10.pdf
Doi http://dx.doi.org/10.18653/v1/2023.loresmt-1.10
Klíčová slova NLP;low-resource;sentence alignment
Přiložené soubory
Popis Parallel corpora are still crucial to train effective Machine Translation systems. This is even more true for low-resource language pairs, for which Neural Machine Translation has been shown to be less robust to domain mismatch and noise. Due to time and resource constraints, parallel corpora are mostly created with sentence alignment methods which automatically infer alignments. Recent work focused on state-of-the-art pre-trained sentence embeddings-based methods which are available only for a tiny fraction of the world’s languages. In this paper, we evaluate the performance of four widely used algorithms on the low-resource English-Yorubá language pair against a multidomain benchmark parallel corpus on two experiments involving 1-to-1 alignments with and without reordering. We find that, at least for this language pair, earlier and simpler methods are more suited to the task, all the while not requiring additional data or resources. We also report that the methods we evaluated perform differently across distinct domains, thus indicating that some approach may be better for a specific domain or textual structure.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

K vyhodnocování tohoto webu a k personalizaci obsahu a reklam používáme soubory cookies. Když klikněte na „přijmout cookies", poskytnete nám souhlas k jejich uložení, správě a analýze. Upravit možnosti

Jen nezbytné Přijmout cookies