No shortfall of ES estimators: Insights from cryptocurrency portfolios

Autoři

HORVÁTH Matúš VÝROST Tomáš

Rok publikování 2025
Druh Článek v odborném periodiku
Časopis / Zdroj Finance Research Letters
Fakulta / Pracoviště MU

Ekonomicko-správní fakulta

Citace
www https://doi.org/10.1016/j.frl.2024.106685
Doi http://dx.doi.org/10.1016/j.frl.2024.106685
Klíčová slova Value-at-risk; Expected shortfall; Forecasting; Cryptocurrency; Portfolio
Popis Since the Basel III accords, Expected Shortfall (ES) has become the recommended tail-risk measure in financial investments. Several methods of different theoretical backgrounds, complexity, and ease of implementation have since been developed for ES. As the competing set of models for ES grows, the question of which one to use becomes relevant to both academia and practitioners. We compare the predictive ability of four classes of models for ES estimation and identify a superior set. We verify the viability of these models in portfolio applications based on cryptocurrencies, an asset class with high volatility, particularly suitable for tail risk mitigation.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.