Forecasting of clean energy market volatility: The role of oil and the technology sector

Logo poskytovatele
Autoři

LYÓCSA Štefan NEDA Todorova

Rok publikování 2024
Druh Článek v odborném periodiku
Časopis / Zdroj Energy Economics
Fakulta / Pracoviště MU

Ekonomicko-správní fakulta

Citace
www https://www.sciencedirect.com/science/article/pii/S0140988324001592
Doi http://dx.doi.org/10.1016/j.eneco.2024.107451
Klíčová slova Clean energy Energy transition Technology stocks Volatility Forecasting
Popis This study is the first to explore whether the well-known relationship between the clean energy sector, oil prices, and technology stocks can be leveraged to enhance the accuracy of realized volatility forecasts for individual clean energy sub-sectors. Based on intraday data and various decompositions of daily realized volatility, we account for the heterogeneity across clean energy sub-sectors using the dynamic common correlated effect heterogeneous autoregressive (DCCE-HAR) model. Our findings reveal that, in the short term, price variations in technology shares are more informative for future clean energy volatility than fluctuations in oil prices. In an out-of-sample analysis, we individually forecast the volatility of each clean energy sub-index using Lasso, Ridge, and random forest approaches. We identify sub-indices that systematically benefit from technology sector price variation (e.g. Smart Grid, Operators, Energy Management), sub-indices that benefit from oil price variation (e.g. Bio Fuel, Wind and Geothermal), while also sub-indices that show limited sensitivity to price variation in the technology and oil markets.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.