A multifractional option pricing formula

Autoři

ARANEDA Axel A.

Rok publikování 2024
Druh Článek v odborném periodiku
Časopis / Zdroj FLUCTUATION AND NOISE LETTERS
Fakulta / Pracoviště MU

Ekonomicko-správní fakulta

Citace
www https://www.worldscientific.com/doi/epdf/10.1142/S0219477524500603
Doi http://dx.doi.org/10.1142/S0219477524500603
Klíčová slova Multifractional Brownian motion; Hurst exponent; long-range dependence; European option pricing
Popis Fractional Brownian motion has become a standard tool to address long-range dependence in financial time series. However, a constant memory parameter is too restrictive to address different market conditions. Here, we model the price fluctuations using a multifractional Brownian motion assuming that the Hurst exponent is a time-deterministic function. Through the multifractional Ito calculus, both the related transition density function and the analytical European Call option pricing formula are obtained. The empirical performance of the multifractional Black-Scholes model is tested by calibration of option market quotes for the SPX index and offers best fit than its counterparts based on standard and fractional Brownian motions.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.