Horizons that gyre and gimble: a differential characterization of null hypersurfaces

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

BLITZ Samuel Harris MCNUTT David

Rok publikování 2024
Druh Článek v odborném periodiku
Časopis / Zdroj European Physical Journal C
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www
Doi http://dx.doi.org/10.1140/epjc/s10052-024-12919-y
Klíčová slova General Relativity and Quantum Cosmology; Differential Geometry
Popis Motivated by the thermodynamics of black hole solutions conformal to stationary solutions, we study the geometric invariant theory of null hypersurfaces. It is well-known that a null hypersurface in a Lorentzian manifold can be treated as a Carrollian geometry. Additional structure can be added to this geometry by choosing a connection which yields a Carrollian manifold. In the literature various authors have introduced Koszul connections to study the study the physics on these hypersurfaces. In this paper we examine the various Carrollian geometries and their relationship to null hypersurface embeddings. We specify the geometric data required to construct a rigid Carrollian geometry, and we argue that a connection with torsion is the most natural object to study Carrollian manifolds. We then use this connection to develop a hypersurface calculus suitable for a study of intrinsic and extrinsic differential invariants on embedded null hypersurfaces; motivating examples are given, including geometric invariants preserved under conformal transformations.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.