Monitizer: Automating Design and Evaluation of Neural Network Monitors

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

AZEEM Muqsit KANAV Sudeep KŘETÍNSKÝ Jan MOHR Stefanie RIEDER Sabine

Rok publikování 2024
Druh Článek ve sborníku
Konference Computer Aided Verification
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/978-3-031-65630-9_14
Klíčová slova Neural Networks; Monitoring; Hyperparameter Tuning
Popis The behavior of neural networks (NNs) on previously unseen types of data (out-of-distribution or OOD) is typically unpredictable. This can be dangerous if the network's output is used for decision making in a safety-critical system. Hence, detecting that an input is OOD is crucial for the safe application of the NN. Verification approaches do not scale to practical NNs, making runtime monitoring more appealing for practical use. While various monitors have been suggested recently, their optimization for a given problem, as well as comparison with each other and reproduction of results, remain challenging.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.