On Lexicographic Proof Rules for Probabilistic Termination

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

CHATTERJEE Krishnendu GOHARSHADY Ehsan Kafshdar NOVOTNÝ Petr ZÁREVÚCKY Jiří ŽIKELIĆ Djordje

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Formal Aspects of Computing
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://dl.acm.org/doi/10.1145/3585391
Doi http://dx.doi.org/10.1145/3585391
Klíčová slova probabilistic programs; termination; martingales
Popis We consider the almost-sure (a.s.) termination problem for probabilistic programs, which are a stochastic extension of classical imperative programs. Lexicographic ranking functions provide a sound and practical approach for termination of non-probabilistic programs, and their extension to probabilistic programs is achieved via lexicographic ranking supermartingales (LexRSMs). However, LexRSMs introduced in the previous work have a limitation that impedes their automation: all of their components have to be non-negative in all reachable states. This might result in a LexRSM not existing even for simple terminating programs. Our contributions are twofold. First, we introduce a generalization of LexRSMs that allows for some components to be negative. This standard feature of non-probabilistic termination proofs was hitherto not known to be sound in the probabilistic setting, as the soundness proof requires a careful analysis of the underlying stochastic process. Second, we present polynomial-time algorithms using our generalized LexRSMs for proving a.s. termination in broad classes of linear-arithmetic programs.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.