Optimal Sobolev embeddings for the Ornstein-Uhlenbeck operator

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

CIANCHI Andrea MUSIL Vít PICK Luboš

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Differential Equations
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://www.sciencedirect.com/science/article/pii/S0022039623001110
Doi http://dx.doi.org/10.1016/j.jde.2023.02.035
Klíčová slova Ornstein-Uhlenbeck operator; Gauss space; embeddings; optimality
Přiložené soubory
Popis A comprehensive analysis of Sobolev-type inequalities for the Ornstein-Uhlenbeck operator in the Gauss space is offered. A unified approach is proposed, providing one with criteria for their validity in the class of rearrangement-invariant function norms. Optimal target and domain norms in the relevant inequalities are characterized via a reduction principle to one-dimensional inequalities for a Calderon type integral operator patterned on the Gaussian isoperimetric function. Consequently, the best possible norms in a variety of spe- cific families of spaces, including Lebesgue, Lorentz, Lorentz-Zygmund, Orlicz and Marcinkiewicz spaces, are detected. The reduction principle hinges on a preliminary discussion of the existence and uniqueness of generalized solutions to equations, in the Gauss space, for the Ornstein-Uhlenbeck operator, with a just integrable right-hand side. A decisive role is also played by a pointwise estimate, in rearrangement form, for these solutions.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.