Reproducibility and Robustness of Authorship Identification Approaches

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

KARÁSEK Adam NEVĚŘILOVÁ Zuzana

Rok publikování 2023
Druh Článek ve sborníku
Konference Proceedings of the Seventeenth Workshop on Recent Advances in Slavonic Natural Languages Processing, RASLAN 2023
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www
Klíčová slova authorship identification; evaluation; reproducibility
Popis Authorship identification, framed as a classification task, assigns a digital text to a known author. State-of-the-art algorithms for this task often lack evaluation across diverse datasets. This paper reimplements and evaluates three approaches on three different datasets, exploring the robustness of algorithms on various text types (e.g., emails, articles, instant messages). Not all the published methods are fully reproducible. However, reasonable parameters were selected if they were not part of the original paper. The evaluation of the ensemble model shows it is somewhat robust on different texts and different numbers of potential authors.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.