Využití metod strojového učení a hmotnostní spektrometrie pro klinické aplikace v nádorové biologii
Autoři | |
---|---|
Rok publikování | 2023 |
Druh | Další prezentace na konferencích |
Fakulta / Pracoviště MU | |
Citace | |
Popis | S rostoucími nároky na analýzy biologických vzorků ve složitých matricích roste i zájem o vývoj a optimalizaci hmotnostně spektrometrických (MS) metod. MS analýza intaktních buněk, vzorků plazmy, ale také i ostatních biologických materiálů má velký význam pro sledování a objasňování biologických procesů v organismu a poskytuje důležité informace o pheno/genotypu organismu. Ve dvou zde prezentovaných tématech jsou představeny různé techniky, které se zabývají studii těchto biologických vzorků. MALDI MS intaktních buněk se již používá v klinické mikrobiologii a diagnostice. V posledních letech byla zavedena také do buněčné biologie, imunologie a studie nádorů. První téma se zaměřuje na klasifikaci buněk rakoviny vaječníků s různým procentuálním podílem buněčných populací s potlačenou expresí genu (TUSC3). Metoda MS byla kombinována s vícerozměrnými statistickými algoritmy a metodami strojového učení (ML), např. PLS-DA, ANN a RF. Všechny výpočetní modely byly sestaveny s využitím programovacího jazyka R. Optimalizací byla MS intaktních buněk spojena s metodami ML pro sledování změn TUSC3 genu. Data získaná z hmotnostních spekter byla analyzována pomocí vyvinutého skriptu v jazyce R. Byla popsána metodika pro předzpracovaní dat, která vedla ke snížení technické variability datasetu. Metodika byla popsána s využitím souboru dat čítajícím 175 hmotnostních spekter. Celkem bylo vytvořeno a porovnáno 5 klasifikátorů založených na různých algoritmech, které byly dále optimalizovány. Jako model s nejlepší klasifikační schopností se 100% přesností (95% interval spolehlivosti, Cl = 94,7-100 %) pro validační data byla určena diskriminační analýza částečných nejmenších čtverců (PLS-DA). Výše popsaná metoda byla použita i pro další studie, například pro sledování diferenciace hESC do ELEP. Zde byla provedena vizualizace diferenciační trajektorie pouze na základě spektrálních dat a odhalili jsme také některé fenotypové abnormality související s počtem pasáží a zástupně s aneuploidním stavem hESC. Druhým tématem je vývoj metody pro analýzu vzorků lidské plazmy pomocí MALDI MS. Cílem je vyvinutí metody pro rozlišení pacientů s mnohočetným myelomem (MM) a pacienty s plazmocelulární leukémii (PCL) a extramedulárním onemocněním (EMD). Pro analýzu vzorků byl vyvinut dvoustupňový protokol extrakce proteinů. Intenzita v celém použitém rozsahu m/z se při použití extrakčního protokolu zvýšila přibližně 50× (v porovnání s neupravenými vzorky plazmy). Klasifikace pomocí ML algoritmů (RF, PLS-DA a ANN) dosáhla přesnosti 80-90 % pro trénovací soubor dat a 79-87 % pro testovací soubor dat. Tato zjištění mohou pomoci urychlit integraci MALDI MS do klinického použití a zpřesnit diagnózu těchto onemocnění. Podpořeno Masarykovou univerzitou projekt č.: MUNI/A/1298/2022, MUNI/A/1301/2022, MUNI/11/ACC/3/2022, ministerstvem zdravotnictví ČR projekt č.: NU21-03-00076 a grantovou agentura České republiky projekt č.: GA23-06675S. |
Související projekty: |
|