Advancing Enzyme's Stability and Catalytic Efficiency through Synergy of Force-Field Calculations, Evolutionary Analysis, and Machine Learning

Logo poskytovatele
Logo poskytovatele
Logo poskytovatele
Logo poskytovatele
Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

KUNKA Antonín MARQUES Sérgio Manuel HAVLÁSEK Martin VAŠINA Michal VELÁTOVÁ Nikola CENGELOVÁ Lucia KOVÁŘ David DAMBORSKÝ Jiří MAREK Martin BEDNÁŘ David PROKOP Zbyněk

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj ACS Catalysis
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://pubs.acs.org/doi/10.1021/acscatal.3c02575
Doi http://dx.doi.org/10.1021/acscatal.3c02575
Klíčová slova biocatalysis; computational design; FireProt; machine learning; PROSS; proteinengineering; stabilization; thermostability
Přiložené soubory
Popis Thermostability is an essential requirement for the use of enzymes in the bioindustry. Here, we compare different protein stabilization strategies using a challenging target, a stable haloalkane dehalogenase DhaA115. We observe better performance of automated stabilization platforms FireProt and PROSS in designing multiple-point mutations over the introduction of disulfide bonds and strengthening the intra- and the inter-domain contacts by in silico saturation mutagenesis. We reveal that the performance of automated stabilization platforms was still compromised due to the introduction of some destabilizing mutations. Notably, we show that their prediction accuracy can be improved by applying manual curation or machine learning for the removal of potentially destabilizing mutations, yielding highly stable haloalkane dehalogenases with enhanced catalytic properties. A comparison of crystallographic structures revealed that current stabilization rounds were not accompanied by large backbone re-arrangements previously observed during the engineering stability of DhaA115. Stabilization was achieved by improving local contacts including protein-water interactions. Our study provides guidance for further improvement of automated structure-based computational tools for protein stabilization.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.