Formal Setting for Period Doubling Bifurcation of Limit Cycles

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

ZÁTHURECKÝ Jakub

Rok publikování 2023
Druh Článek ve sborníku
Konference 15th Chaotic Modeling and Simulation International Conference
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1007/978-3-031-27082-6_27
Doi http://dx.doi.org/10.1007/978-3-031-27082-6_27
Klíčová slova Limit cycle; Period doubling; Fredholm operator; Lyapunov-Schmidt reduction; Pitchfork bifurcation
Popis A rigorous description of period doubling bifurcation of limit cycles in autonomous systems of first order differential equations based on tools of functional analysis and singularity theory is presented. It is an alternative approach which is independent of the theory of discrete-time dynamical systems, especially Poincaré sections. Particularly, sufficient conditions for its occurrence and its normal form coefficients are expressed in terms of derivatives of the operator defining given equations. Also, stability of solutions is analysed and it is related to particular derivatives of the operator. Our approach is an adjustment of techniques used by Golubitsky and Schaeffer (Singularities and Groups in Bifurcation Theory: Volume 1. Springer, New York, 1985) in the study of Hopf bifurcation and it can be considered as a theoretical background for calculations presented in Kuznetsov et al. (SIAM J. Numer. Anal. 43:1407–1435, 2006). The normal form of a vector field derived in Iooss (J. Differ. Equ. 76:47–76, 1988) is not needed, since a given differential equation is considered as an algebraic equation. The theory used here concerns Fredholm operators, Lyapunov-Schmidt reduction and recognition problem for pitchfork bifurcation.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.