xOpat: eXplainable Open Pathology Analysis Tool

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

HORÁK Jiří FURMANOVÁ Katarína KOZLÍKOVÁ Barbora BRÁZDIL Tomáš HOLUB Petr KAČENGA Martin GALLO Matej NENUTIL Rudolf BYŠKA Jan RUSŇÁK Vít

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj COMPUTER GRAPHICS FORUM
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://diglib.eg.org/handle/10.1111/cgf14812
Doi http://dx.doi.org/10.1111/cgf.14812
Klíčová slova Medical Imaging; Scientific Visualization; Open Pathology; Toolkit; artificial intelligence; Visual Analysis; AI explainability; GPU Rendering;
Popis Histopathology research quickly evolves thanks to advances in whole slide imaging (WSI) and artificial intelligence (AI). However, existing WSI viewers are tailored either for clinical or research environments, but none suits both. This hinders the adoption of new methods and communication between the researchers and clinicians. The paper presents xOpat, an open-source, browser- based WSI viewer that addresses these problems. xOpat supports various data sources, such as tissue images, pathologists’ annotations, or additional data produced by AI models. Furthermore, it provides efficient rendering of multiple data layers, their visual representations, and tools for annotating and presenting findings. Thanks to its modular, protocol-agnostic, and extensible architecture, xOpat can be easily integrated into different environments and thus helps to bridge the gap between research and clinical practice. To demonstrate the utility of xOpat, we present three case studies, one conducted with a developer of AI algorithms for image segmentation and two with a research pathologist.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.