CELLULAR CATEGORIES AND STABLE INDEPENDENCE

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

LIEBERMAN Michael Joseph ROSICKÝ Jiří VASEY Sebastien

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Symbolic Logic
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1017/jsl.2022.40
Doi http://dx.doi.org/10.1017/jsl.2022.40
Klíčová slova cellular categories; forking; stable independence; abstract elementary class; cofibrantly generated; roots of Ext
Popis We exhibit a bridge between the theory of cellular categories, used in algebraic topology and homological algebra, and the model-theoretic notion of stable independence. Roughly speaking, we show that the combinatorial cellular categories (those where, in a precise sense, the cellular morphisms are generated by a set) are exactly those that give rise to stable independence notions. We give two applications: on the one hand, we show that the abstract elementary classes of roots of Ext studied by Baldwin–Eklof–Trlifaj are stable and tame. On the other hand, we give a simpler proof (in a special case) that combinatorial categories are closed under 2-limits, a theorem of Makkai and Rosický.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.