SoluProtMutDB: A manually curated database of protein solubility changes upon mutations

Logo poskytovatele
Logo poskytovatele
Logo poskytovatele
Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

VELECKÝ Jan HAMŠÍKOVÁ Marie ŠTOURAČ Jan MUSIL Miloš DAMBORSKÝ Jiří BEDNÁŘ David MAZURENKO Stanislav

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj Computational and Structural Biotechnology Journal
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://www.sciencedirect.com/science/article/pii/S2001037022005025?via%3Dihub
Doi http://dx.doi.org/10.1016/j.csbj.2022.11.009
Klíčová slova Mutational database; Protein engineering; Soluble expression; Protein yield; Machine learning; Protein aggregation
Přiložené soubory
Popis Protein solubility is an attractive engineering target primarily due to its relation to yields in protein production and manufacturing. Moreover, better knowledge of the mutational effects on protein solubility could connect several serious human diseases with protein aggregation. However, we have limited understanding of the protein structural determinants of solubility, and the available data have mostly been scattered in the literature. Here, we present SoluProtMutDB – the first database containing data on protein solubility changes upon mutations. Our database accommodates 33 000 measurements of 17 000 protein variants in 103 different proteins. The database can serve as an essential source of information for the researchers designing improved protein variants or those developing machine learning tools to predict the effects of mutations on solubility. The database comprises all the previously published solubility datasets and thousands of new data points from recent publications, including deep mutational scanning experiments. Moreover, it features many available experimental conditions known to affect protein solubility. The datasets have been manually curated with substantial corrections, improving suitability for machine learning applications. The database is available at loschmidt.chemi.muni.cz/soluprotmutdb.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.