Geometric Control of Cell Behavior by Biomolecule Nanodistribution

Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Lékařskou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

POSPÍŠIL Jakub HRABOVSKY Milos BOHAČIAKOVÁ Dáša HOVADKOVA Zuzana JURÁSEK Miroslav MLČOUŠKOVÁ Jarmila PARUCH Kamil NEVOLOVÁ Šárka DAMBORSKÝ Jiří HAMPL Aleš JAROŠ Josef

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj ACS BIOMATERIALS SCIENCE & ENGINEERING
Fakulta / Pracoviště MU

Lékařská fakulta

Citace
www https://pubs.acs.org/doi/10.1021/acsbiomaterials.2c00650?utm_source=pcm&utm_medium=twitter&utm_campaign=PUBS_1022_SLM_AB_abseba_nanotech_day&src=PUBS_1022_SLM_AB_abseba_nanotech_day&
Doi http://dx.doi.org/10.1021/acsbiomaterials.2c00650
Klíčová slova nanopatterning; nanospacing; biomimetic surface; electron-beam lithography; cell-cell interaction; cell adhesion and spreading; ligand clustering
Přiložené soubory
Popis Many dynamic interactions within the cell micro-environment modulate cell behavior and cell fate. However, the pathways and mechanisms behind cell-cell or cell-extracellular matrix interactions remain understudied, as they occur at a nanoscale level. Recent progress in nanotechnology allows for mimicking of the microenvironment at nanoscale in vitro; electron-beam lithography (EBL) is currently the most promising technique. Although this nanopatterning technique can generate nanostructures of good quality and resolution, it has resulted, thus far, in the production of only simple shapes (e.g., rectangles) over a relatively small area (100 x 100 mu m), leaving its potential in biological applications unfulfilled. Here, we used EBL for cell-interaction studies by coating cell-culture-relevant material with electron-conductive indium tin oxide, which formed nanopatterns of complex nanohexagonal structures over a large area (500 x 500 mu m). We confirmed the potential of EBL for use in cell-interaction studies by analyzing specific cell responses toward differentially distributed nanohexagons spaced at 1000, 500, and 250 nm. We found that our optimized technique of EBL with HaloTags enabled the investigation of broad changes to a cell-culture-relevant surface and can provide an understanding of cellular signaling mechanisms at a single-molecule level.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.