Collective Variable for Metadynamics Derived From AlphaFold Output

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Ústav výpočetní techniky. Oficiální stránka publikace je na webu muni.cz.
Autoři

SPIWOK Vojtěch KUREČKA Martin KŘENEK Aleš

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj FRONTIERS IN MOLECULAR BIOSCIENCES
Fakulta / Pracoviště MU

Ústav výpočetní techniky

Citace
www https://www.frontiersin.org/articles/10.3389/fmolb.2022.878133/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Molecular_Biosciences&id=878133
Doi http://dx.doi.org/10.3389/fmolb.2022.878133
Klíčová slova protein folding; alphafold; collective variable
Popis AlphaFold is a neural network–based tool for the prediction of 3D structures of proteins. In CASP14, a blind structure prediction challenge, it performed significantly better than other competitors, making it the best available structure prediction tool. One of the outputs of AlphaFold is the probability profile of residue–residue distances. This makes it possible to score any conformation of the studied protein to express its compliance with the AlphaFold model. Here, we show how this score can be used to drive protein folding simulation by metadynamics and parallel tempering metadynamics. Using parallel tempering metadynamics, we simulated the folding of a mini-protein Trp-cage and ß hairpin and predicted their folding equilibria. We observe the potential of the AlphaFold-based collective variable in applications beyond structure prediction, such as in structure refinement or prediction of the outcome of a mutation.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.