Resolvent and spectrum for discrete symplectic systems in the limit point case
Autoři | |
---|---|
Rok publikování | 2022 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Linear Algebra and its Applications |
Fakulta / Pracoviště MU | |
Citace | |
www | https://doi.org/10.1016/j.laa.2021.11.001 |
Doi | http://dx.doi.org/10.1016/j.laa.2021.11.001 |
Klíčová slova | Discrete symplectic system; Spectrum; Eigenvalue; Limit point case; M(?)-function |
Popis | The spectrum of an arbitrary self-adjoint extension of the minimal linear relation associated with the discrete symplectic system in the limit point case is completely characterized by using the limiting Weyl–Titchmarsh M+(?) -function. Furthermore, a dependence of the spectrum on a boundary condition is investigated and, consequently, several results of the singular Sturmian theory are derived. |
Související projekty: |