Quasirandom Latin squares
Autoři | |
---|---|
Rok publikování | 2022 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Random Structures & Algorithms |
Fakulta / Pracoviště MU | |
Citace | |
www | https://arxiv.org/abs/2011.07572 |
Doi | http://dx.doi.org/10.1002/rsa.21060 |
Klíčová slova | combinatorial limit; Latin square; Latinon; quasirandomness |
Popis | We prove a conjecture by Garbe et al. [arXiv:2010.07854] by showing that a Latin square is quasirandom if and only if the density of every 2x3 pattern is 1/720 + o(1). This result is the best possible in the sense that 2x3 cannot be replaced with 2x2 or 1xN for any N. |
Související projekty: |