The MacNeille Completions for Residuated S-Posets

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

ZHANG Xia PASEKA Jan

Rok publikování 2021
Druh Článek v odborném periodiku
Časopis / Zdroj International Journal of Theoretical Physics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1007/s10773-019-04046-2
Doi http://dx.doi.org/10.1007/s10773-019-04046-2
Klíčová slova Residuated poset; S-semigroup; Residuated S-poset; Order-embedding; Subhomomorphism; Lattice-valued sup-lattice; Sup-algebra; Quantale; Q-module; Q-algebra; S-semigroup quantale; Injective object; Injective hull
Popis In this paper, we continue the study of injectivity for fuzzy-like structures. We extend the results of Zhang and Paseka for S-semigroups to the setting of residuated S-posets. It turns out that every residuated S-poset over a quantale S embeds into its MacNeille completion as its E?-injective hull. In particular, if S is a commutative quantale, then the injectives in the category of residuated S-posets with subhomomorphisms are precisely the quantale algebras introduced by Solovyov. Quantale algebras provide a convenient universally algebraic framework for developing lattice-valued analogues of fuzzification.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.