Eigenfunctions expansion for discrete symplectic systems with general linear dependence on spectral parameter
Autoři | |
---|---|
Rok publikování | 2021 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Journal of Mathematical Analysis and Applications |
Fakulta / Pracoviště MU | |
Citace | |
www | https://doi.org/10.1016/j.jmaa.2021.125054 |
Doi | http://dx.doi.org/10.1016/j.jmaa.2021.125054 |
Klíčová slova | Discrete symplectic system; Eigenvalue; Eigenfunction; Expansion theorem; M(lambda)-function |
Popis | Eigenfunctions expansion for discrete symplectic systems on a finite discrete interval is established in the case of a general linear dependence on the spectral parameter as a significant generalization of the Expansion theorem given by Bohner et al. (2009) [14]. Subsequently, an integral representation of the Weyl-Titchmarsh M(lambda)-function is derived explicitly by using a suitable spectral function and a possible extension to the half-line case is discussed. The main results are illustrated by several examples. |
Související projekty: |