Predicting protein stability and solubility changes upon mutations: data perspective

Logo poskytovatele
Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

MAZURENKO Stanislav

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj ChemCatChem
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202000933
Doi http://dx.doi.org/10.1002/cctc.202000933
Klíčová slova Database; Machine learning; Protein design; Protein engineering; Protein modifications
Přiložené soubory
Popis Understanding mutational effects on protein stability and solubility is of particular importance for creating industrially relevant biocatalysts, resolving mechanisms of many human diseases, and producing efficient biopharmaceuticals, to name a few. Forin silicopredictions, the complexity of the underlying processes and increasing computational capabilities favor the use of machine learning. However, this approach requires sufficient training data of reasonable quality for making precise predictions. This minireview aims to summarize and scrutinize available mutational datasets commonly used for training predictors. We analyze their structure and discuss the possible directions of improvement in terms of data size, quality, and availability. We also present perspectives on the development of mutational data for accelerating the design of efficient predictors, introducing two new manually curated databases FireProt(DB)and SoluProtMut(DB)for protein stability and solubility, respectively.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.