Distribution and number of focal points for linear Hamiltonian systems

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

ŠEPITKA Peter ŠIMON HILSCHER Roman

Rok publikování 2021
Druh Článek v odborném periodiku
Časopis / Zdroj Linear Algebra and Its Applications
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1016/j.laa.2020.11.018
Doi http://dx.doi.org/10.1016/j.laa.2020.11.018
Klíčová slova Linear Hamiltonian system; Left focal point; Right focal point; Comparative index; Principal solution; Sturmian theory
Popis In this paper we consider the question of distribution and number of left and right focal points for conjoined bases of linear Hamiltonian differential systems. We do not assume any complete controllability (identical normality) condition. Recently we obtained the Sturmian separation theorem for this case which provides optimal lower and upper bounds for the numbers of left and right focal points of every conjoined basis in terms of the principal solutions at the endpoints of the interval. In this paper we show that for any two given integers within these bounds there exists a conjoined basis with these prescribed numbers of left and right focal points. We determine such conjoined bases by their initial conditions. Our approach is to transfer the problem through the comparative index into matrix analysis. The main results are new even for completely controllable linear Hamiltonian systems. As an application we extend a classical result for controllable systems by Reid (1971) about the existence of conjoined bases with an invertible first component.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.