Higher symmetries of symplectic Dirac operator
Autoři | |
---|---|
Rok publikování | 2020 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Geometriae Dedicata |
Fakulta / Pracoviště MU | |
Citace | |
www | https://doi.org/10.1007/s10711-020-00529-3 |
Doi | http://dx.doi.org/10.1007/s10711-020-00529-3 |
Klíčová slova | Symplectic Dirac operator; Higher symmetry algebra; Projective differential geometry; Minimal nilpotent orbit; sl(3.R) |
Popis | We construct in projective differential geometry of the real dimension 2 higher symmetry algebra of the symplectic Dirac operator D-s acting on symplectic spinors. The higher symmetry differential operators correspond to the solution space of a class of projectively invariant overdetermined operators of arbitrarily high order acting on symmetric tensors. The higher symmetry algebra structure corresponds to a completely prime primitive ideal having as its associated variety the minimal nilpotent orbit of sl(3,R). |
Související projekty: |