Towards Useful Word Embeddings: Evaluation on Information Retrieval, Text Classification, and Language Modeling

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

NOVOTNÝ Vít ŠTEFÁNIK Michal LUPTÁK Dávid SOJKA Petr

Rok publikování 2020
Druh Článek ve sborníku
Konference Proceedings of the Fourteenth Workshop on Recent Advances in Slavonic Natural Language Processing, RASLAN 2020
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www
Klíčová slova Evaluation; word vectors; word2vec; fastText; information retrieval; text classification; language modeling
Popis

Since the seminal work of Mikolov et al. (2013), word vectors of log-bilinear models have found their way into many NLP applications and were extended with the positional model.

Although the positional model improves accuracy on the intrinsic English word analogy task, prior work has neglected its evaluation on extrinsic end tasks, which correspond to real-world NLP applications.

In this paper, we describe our first steps in evaluating positional weighting on the information retrieval, text classification, and language modeling extrinsic end tasks.

Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.