Sizes and filtrations in accessible categories

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

LIEBERMAN Michael ROSICKÝ Jiří VASEY Sébastien Bernard

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj Israel Journal of Mathematics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1007/s11856-020-2018-8
Doi http://dx.doi.org/10.1007/s11856-020-2018-8
Klíčová slova internal size; presentability rank; existence spectrum; accessibility spectrum; filtrations; singular cardinal hypothesis
Popis Accessible categories admit a purely category-theoretic replacement for cardinality: the internal size. We examine set-theoretic problems related to internal sizes and prove several Löwenheim–Skolem theorems for accessible categories. For example, assuming the singular cardinal hypothesis, we show that a large accessible category has an object in all internal sizes of high enough co-finality. We also prove that accessible categories with directed colimits have filtrations: any object of sufficiently high internal size is (the retract of) a colimit of a chain of strictly smaller objects.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.