Genera of Conjoined Bases for (Non)oscillatory Linear Hamiltonian Systems: Extended Theory

Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

ŠEPITKA Peter

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of dynamics and differential equations.
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1007/s10884-019-09810-w
Doi http://dx.doi.org/10.1007/s10884-019-09810-w
Klíčová slova Linear Hamiltonian system; Genus of conjoined bases; Riccati differential equation; Controllability; Orthogonal projector
Popis In this paper we study the properties of conjoined bases of a general linear Hamiltonian system without any controllability condition. When the Legendre condition holds and the system is nonoscillatory, it is known from our previous work that conjoined bases with eventually the same image form a special structure called a genus. In this work we extend the theory of genera of conjoined bases to arbitrary systems, for which the Legendre condition is not assumed and/or the system may be oscillatory. We derive a classification of all genera of conjoined bases and show that they form a complete lattice. These results are based on the relationship between subspaces of solutions of a linear control system and orthogonal projectors satisfying a certain Riccati type differential equation. The presented theory is applied in our paper (Sepitka in Discrete Contin Dyn Syst 39(4):1685-1730,2019) to general Riccati matrix differential equations for possibly uncontrollable linear Hamiltonian systems.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.