Rotation Based MSS/MCS Enumeration

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

BENDÍK Jaroslav ČERNÁ Ivana

Rok publikování 2020
Druh Článek ve sborníku
Konference LPAR 2020: 23rd International Conference on Logic for Programming, Artificial Intelligence and Reasoning
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://easychair.org/publications/paper/rXZL
Doi http://dx.doi.org/10.29007/8btb
Klíčová slova Maximal Satisfiable Subsets;Minimal Correction Subsets;Infeasibility Analysis;Diagnosis;MSS;MCS
Popis Given an unsatisfiable Boolean Formula F in CNF, i.e., a set of clauses, one is often interested in identifying Maximal Satisfiable Subsets (MSSes) of F or, equivalently, the complements of MSSes called Minimal Correction Subsets (MCSes). Since MSSes (MCSes) find applications in many domains, e.g. diagnosis, ontologies debugging, or axiom pinpointing, several MSS enumeration algorithms have been proposed. Unfortunately, finding even a single MSS is often very hard since it naturally subsumes repeatedly solving the satisfiability problem. Moreover, there can be up to exponentially many MSSes, thus their complete enumeration is often practically intractable. Therefore, the algorithms tend to identify as many MSSes as possible within a given time limit. In this work, we present a novel MSS enumeration algorithm called RIME. Compared to existing algorithms, RIME is much more frugal in the number of performed satisfiability checks which we witness via an experimental comparison. Moreover, RIME is several times faster than existing tools.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.