Cdk13-/- Mice Exhibit Developmental Delay and Craniofacial Malformations during Embryonic Development

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

HAMPL Marek NOVAKOVA M. KAVKOVA M. ZIKMUND T. KOHOUTEK J. KAISER J. BUCHTOVÁ marcela

Rok publikování 2019
Druh Konferenční abstrakty
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Popis Cyclin-dependent kinase 13 (CDK13) belongs to the family of transcription regulating kinases. Together with its binding partners, cyclin K or L, they form a complex which regulates phosphorylation of RNA Polymerase II, or control alternative splicing. Large numbers of different mutations of this gene cause various developmental defects. In humans, these mutations cause developmental delay, intellectual disability, autism, seizures, facial dysmorphisms, structural heart, brain and digital abnormalities. Our mouse strain with mutation in Cdk13 gene has very similar phenotypic manifestations including developmental delay, craniofacial and heart abnormalities, plus defects in kidney morphology. The aim of this study is to precisely describe morphological changes in the craniofacial region of Cdk13-/- embryos and to reveal what cellular and molecular processes are responsible for these changes. According to macroscopic and microscopic analysis, the most obvious morphological differences between wild type and mutat embryos in the craniofacial region are a generally smaller head, cleft palate and smaller and dysmorphic incisor tooth germs. Alizarin red and Alcian blue staining showed differences in morphology of bones and cartilages of the head between wild type and mutant embryos. For deeper analysis of bones and teeth, we performed muCTscanning. Analyses were performed on embryos from E11.5 to E16.5. Precursor cells normally migrate along the axons to their final destination in order to differentiate and form a specific tissue or can serve there as a source for eventual renewal. Our goal is to reveal whether migration of craniofacial-forming cells is impeded if axonal outgrowth in Cdk13 mutants is defective. CDK13 is known to be responsible for axon outgrowth in vitro. This hypothesis will be verified using IHC on slides and on wholemount embryos, and on PCR arrays specific for mouse neurogenesis markers.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.