Financial Distress Prediction: Zmijewski (1984) vs. Data Mining

Autoři

ŠTĚRBA Martin ŠIŠKA Ladislav

Rok publikování 2020
Druh Článek ve sborníku
Konference Proceedings of the International Scientific Conference of Business Economics Management and Marketing 2019
Fakulta / Pracoviště MU

Ekonomicko-správní fakulta

Citace
www https://webcentrum.muni.cz/media/3220002/sbornik-2019-105-converted.pdf
Klíčová slova financial distress; data mining; neural networks; bankruptcy
Popis The study re-estimates the Zmijewski's (1984) prediction model of financial distress with techniques offered by data miners. Namely logistic regression, neural network and decision tree models are applied to the training dataset consisting of approx. 130 thousand annual observations of financial ratios from non-financial companies residing in Czechia. Area under ROC curve (AUC) computed from similarly large independent testing set served as a measure of the predictive power of each alternative model. Our findings reveal the potential of neural networks to slightly, but statistically significantly increase the prediction power of the model. But this benefit goes in expense of complexity and lower interpretability of neural networks.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.