Resolving the temporal evolution of line broadening in single quantum emitters

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

SCHIMPF Christian REINDL Marcus KLENOVSKÝ Petr FROMHERZ Thomas DA SILVA Saimon F. Covre HOFER Julian SCHNEIDER Christian HOEFLING Sven TROTTA Rinaldo RASTELLI Armando

Rok publikování 2019
Druh Článek v odborném periodiku
Časopis / Zdroj Optics Express
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://www.osapublishing.org/oe/abstract.cfm?uri=oe-27-24-35290
Doi http://dx.doi.org/10.1364/OE.27.035290
Klíčová slova Resolving spectral resolution to Fourier limit;Photon correlated Fourier spectroscopy;Quantum dot
Popis Light emission from solid-state quantum emitters is inherently prone to environmental decoherence, which results in a line broadening and in the deterioration of photon indistinguishability. ere we employ photon correlation Fourier spectroscopy (PCFS) to study the temporal evolution of such a broadening in two prominent systems: GaAs and In(Ga)As quantum dots. Differently from previous experiments, the emitters are driven with short laser pulses as required for the generation of high-purity single photons, the time scales we probe range from a few nanoseconds to milliseconds and, simultaneously, the spectral resolution we achieve can be as small as ~2µeV. We find pronounced differences in the temporal evolution of different optical transition lines, which we attribute to differences in their homogeneous linewidth and sensitivity to charge noise. We analyze the effect of irradiation with additional white light, which reduces blinking at the cost of enhanced charge noise. Due to its robustness against experimental imperfections and its high temporal resolution and bandwidth, PCFS outperforms established spectroscopy techniques, such as Michelson interferometry. We discuss its practical implementation and the possibility to use it to estimate the indistinguishability of consecutively emitted single photons for applications in quantum communication and photonic-based quantum information processing.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.