Calculus on symplectic manifolds
Autoři | |
---|---|
Rok publikování | 2018 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Archivum Mathematicum |
Fakulta / Pracoviště MU | |
Citace | |
www | https://dml.cz/bitstream/handle/10338.dmlcz/147504/ArchMathRetro_054-2018-5_3.pdf |
Doi | http://dx.doi.org/10.5817/AM2018-5-265 |
Klíčová slova | symplectic structure;Kähler structure;tractor calculus;exact complex;BGG machinery |
Popis | On a symplectic manifold, there is a natural elliptic complex replacing the de Rham complex. It can be coupled to a vector bundle with connection and, when the curvature of this connection is constrained to be a multiple of the symplectic form, we find a new complex. In particular, on complex projective space with its Fubini–Study form and connection, we can build a series of differential complexes akin to the Bernstein–Gelfand–Gelfand complexes from parabolic differential geometry. |
Související projekty: |