Solving Problems on Graphs of High Rank-Width

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

EIBEN Eduard GANIAN Robert SZEIDER Stefan

Rok publikování 2018
Druh Článek v odborném periodiku
Časopis / Zdroj Algorithmica
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/s00453-017-0290-8
Klíčová slova parameterized complexity; rank-width; modulators
Popis A modulator in a graph is a vertex set whose deletion places the considered graph into some specified graph class. The cardinality of a modulator to various graph classes has long been used as a structural parameter which can be exploited to obtain fixed-parameter algorithms for a range of hard problems. Here we investigate what happens when a graph contains a modulator which is large but “well-structured” (in the sense of having bounded rank-width). Can such modulators still be exploited to obtain efficient algorithms? And is it even possible to find such modulators efficiently? We first show that the parameters derived from such well-structured modulators are more powerful for fixed-parameter algorithms than the cardinality of modulators and rank-width itself. Then, we develop a fixed-parameter algorithm for finding such well-structured modulators to every graph class which can be characterized by a finite set of forbidden induced subgraphs. We proceed by showing how well-structured modulators can be used to obtain efficient parameterized algorithms for Minimum Vertex Cover and Maximum Clique. Finally, we use the concept of well-structured modulators to develop an algorithmic meta-theorem for deciding problems expressible in monadic second order logic, and prove that this result is tight in the sense that it cannot be generalized to LinEMSO problems.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.