Siamese Convolutional Neural Networks for Recognizing Partial Entailment

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

VÍTA Martin

Rok publikování 2018
Druh Článek ve sborníku
Konference Siamese Convolutional Neural Networks for Recognizing Partial Entailment
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www Full paper
Klíčová slova Partial Textual Entailment; Convolutional Neural Networks; Siamese Architectures
Popis Recognizing textual entailment (RTE), i. e., a decision problem whether a sentence (called hypothesis) can be inferred from a given text, became a well established and widely studied task. As a consequence of the traditional binary (or ternary) class formulation, it is not possible to express the fact that a fragment of the hypothesis is entailed by the text, even though the “whole” entailment of the hypothesis from the text does not hold. The notions of partial textual entailment – and faceted entailment in particular – address this problem. In this paper, we introduce a siamese CNN architecture with a static attention mechanism together with a sentence compression and provide an evaluation over modified SemEval 2013 Task 8 dataset.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.