Validation information in the Protein Data Bank: What is it and why should you care?

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

SMART Oliver S. HORSKÝ Vladimír GORE Swanand SVOBODOVÁ VAŘEKOVÁ Radka BENDOVÁ Veronika KLEYWEGT Gerard J. VELANKAR Sameer

Rok publikování 2018
Druh Další prezentace na konferencích
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Popis Widespread availability of biomacromolecular structural data has accelerated the progress of research in various life sciences. As an example of this paradigm shift, computer-assisted studies of ligands bound to active sites of proteins and nucleic acids became possible, which in turn aided structure-guided drug discovery and design. Published structures are stored in many databases that have emerged over time, the largest one being the Protein Data Bank (PDB). Concerns regarding quality of available structures have gone hand-in-hand with broad structure production and usage. Curators of the PDB database have reacted by developing the PDB validation pipeline. Here, we present the available validation metrics and show how their values can be combined into a single score that can be used to rank macromolecular structures and their domains in search results. A major challenge that accompanies crystallographic experiments is how to correctly interpret electron density at binding sites. Incorrect solution of this ambiguity is one of the reasons why quality of ligands in complexes in the PDB is a concerning matter. Therefore, it comes as no surprise that several ligand validation methods are part of the PDB validation pipeline. Here, we describe these methods. Furthermore, we discuss that the currently used LLDF metric can give misleading results.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.