Analysis of diffusion tensor measurements of the human cervical spinal cord based on semiautomatic segmentation of the white and gray matter

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Lékařskou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

DOSTÁL Marek KEŘKOVSKÝ Miloš KORIŤÁKOVÁ Eva NĚMCOVÁ Eva STULÍK Jakub STAŇKOVÁ Monika BERNARD Vladan

Rok publikování 2018
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Magnetic Resonance Imaging
Fakulta / Pracoviště MU

Lékařská fakulta

Citace
www https://onlinelibrary.wiley.com/doi/abs/10.1002/jmri.26166
Doi http://dx.doi.org/10.1002/jmri.26166
Klíčová slova ITK-SNAP; Spinal Cord Toolbox; diffusion tensor imaging; gray and white matter segmentation; spinal cord segmentation
Popis BackgroundPurposeSegmentation of the gray and white matter (GM, WM) of the human spinal cord in MRI images as well as the analysis of spinal cord diffusivity are challenging. When appropriately segmented, diffusion tensor imaging (DTI) of the spinal cord might be beneficial in the diagnosis and prognosis of several diseases. To evaluate the applicability of a semiautomatic algorithm provided by ITK-SNAP in classification mode (CLASS) for segmenting cervical spinal cord GM, WM in MRI images and analyzing DTI parameters. Study TypeSubjectsProspective. Twenty healthy volunteers. SequencesAssessment1.5T, turbo spin echo, fast field echo, single-shot echo planar imaging. Three raters segmented the tissues by manual, CLASS, and atlas-based methods (Spinal Cord Toolbox, SCT) on T-2-weighted and DTI images. Masks were quantified by similarity and distance metrics, then analyzed for repeatability and mutual comparability. Masks created over T-2 images were registered into diffusion space and fractional anisotropy (FA) values were statistically evaluated for dependency on method, rater, or tissue. Statistical TestsResultst-test, analysis of variance (ANOVA), coefficient of variation, Dice coefficient, Hausdorff distance. CLASS segmentation reached better agreement with manual segmentation than did SCT (P<0.001). Intra- and interobserver repeatability of SCT was better for GM and WM (both P<0.001) but comparable with CLASS in entire spinal cord segmentation (P=0.17 and P=0.07, respectively). While FA values of whole spinal cord were not influenced by choice of segmentation method, both semiautomatic methods yielded lower FA values (P<0.005) for GM than did the manual technique (mean differences 0.02 and 0.04 for SCT and CLASS, respectively). Repeatability of FA values for all methods was sufficient, with mostly less than 2% variance.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.