Continuous Time-Dependent kNN Join by Binary Sketches

Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

NÁLEPA Filip BATKO Michal ZEZULA Pavel

Rok publikování 2018
Druh Článek ve sborníku
Konference IDEAS 2018 : 22nd International Database Engineering & Applications Symposium, June 18-20, 2018, Villa San Giovanni, Italy
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1145/3216122.3216159
Klíčová slova continuous kNN similarity join; time-dependent similarity; binary sketches
Popis An important functionality of current social applications is real-time recommendation, which is responsible for suggesting relevant published data to the users based on their preferences. By representing the users and the published data in a metric space, each user can be recommended with their k nearest neighbors among the published data. We consider the scenario when the relevance of a published data item to a user decreases as the data gets older, i.e., a time-dependent distance function is applied. We define the problem as the continuous time-dependent kNN join and provide a solution to a broad range of time-dependent functions. In addition, we propose a binary sketch-based approximation technique used to speed up the join evaluation by replacing expensive metric distance computations with cheap Hamming distances.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.