Stable Scalp EEG Spatiospectral Patterns Across Paradigms Estimated by Group ICA

Logo poskytovatele
Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Ekonomicko-správní fakultu, ale pod Středoevropský technologický institut. Oficiální stránka publikace je na webu muni.cz.
Autoři

LABOUNEK René BRIDWELL D.A. MAREČEK Radek LAMOŠ Martin MIKL Michal SLAVÍČEK Tomáš BEDNAŘÍK Petr BASTINEC J. HLUSTIK P. BRÁZDIL Milan JAN J.

Rok publikování 2018
Druh Článek v odborném periodiku
Časopis / Zdroj BRAIN TOPOGRAPHY
Fakulta / Pracoviště MU

Středoevropský technologický institut

Citace
Doi http://dx.doi.org/10.1007/s10548-017-0585-8
Klíčová slova EEG; ICA; Spatiospectral patterns; Multi-subject blind source separation; Resting-state; Semantic decision; Visual oddball
Popis Electroencephalography (EEG) oscillations reflect the superposition of different cortical sources with potentially different frequencies. Various blind source separation (BSS) approaches have been developed and implemented in order to decompose these oscillations, and a subset of approaches have been developed for decomposition of multi-subject data. Group independent component analysis (Group ICA) is one such approach, revealing spatiospectral maps at the group level with distinct frequency and spatial characteristics. The reproducibility of these distinct maps across subjects and paradigms is relatively unexplored domain, and the topic of the present study. To address this, we conducted separate group ICA decompositions of EEG spatiospectral patterns on data collected during three different paradigms or tasks (resting-state, semantic decision task and visual oddball task). K-means clustering analysis of back-reconstructed individual subject maps demonstrates that fourteen different independent spatiospectral maps are present across the different paradigms/tasks, i.e. they are generally stable.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.